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A B S T R A C T

It is nowadays widely acknowledged that optimal structural design should be robust with respect to the
uncertainties in loads and material parameters. However, there are several alternatives to consider such
uncertainties in structural optimization problems. This paper presents a comprehensive comparison between
the results of three different approaches to topology optimization under uncertain loading, considering stress
constraints: (1) the robust formulation, which requires only the mean and standard deviation of stresses
at each element; (2) the reliability-based formulation, which imposes a reliability constraint on computed
stresses; (3) the non-probabilistic formulation, which considers a worst-case scenario for the stresses caused by
uncertain loads. The information required by each method, regarding the uncertain loads, and the uncertainty
propagation approach used in each case is quite different. The robust formulation requires only mean and
standard deviation of uncertain loads; stresses are computed via a first-order perturbation approach. The
reliability-based formulation requires full probability distributions of random loads, reliability constraints are
computed via a first-order performance measure approach. The non-probabilistic formulation is applicable
for bounded uncertain loads; only lower and upper bounds are used, and worst-case stresses are computed
via a nested optimization with anti-optimization. The three approaches are quite different in the handling
of uncertainties; however, the basic topology optimization framework is the same: the traditional density
approach is employed for material parameterization, while the augmented Lagrangian method is employed to
solve the resulting problem, in order to handle the large number of stress constraints. Results are computed
for two reference problems: similarities and differences between optimized topologies obtained with the three
formulations are exploited and discussed.

1. Introduction

Handling uncertainties in structural optimization is fundamental in
order to design high performance structures which are reliable and
insensitive to parameters which may affect the structural response [1].
Neglecting the effect of such uncertainties during the structural opti-
mization process may be catastrophic, leading to sub-optimal or even
non-optimal designs, which may be unreliable and too sensitive with
respect to the uncertain parameters [1].

In order to overcome this issue and allow the proper handling
of uncertainties in structural optimization, several works on struc-
tural optimization under uncertainties have been developed (see refer-
ences [2–14], for instance). The formulations addressed in these works
are mostly based on established frameworks for optimization under
uncertainty, such as: (1) probabilistic robust approach [15], where
statistical moments are considered during optimization, as expectations
and standard deviations, aiming at reducing sensitivity of the opti-
mized design with respect to the uncertain variables; (2) probabilistic
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reliability-based approach [16], developed to ensure an admissible
failure probability to the optimized design; (3) non-probabilistic robust
approach [17], based on the worst-case scenario for the design con-
straints, employed when there is only the interval information for the
unknown variables.

In this paper, a special category of structural optimization is ad-
dressed: topology optimization of solid structures. Topology optimiza-
tion of continuum structures aims to find the best material distribution
in a given fixed domain in order to extremize an objective function
while respecting a given set of constraints. Topology optimization is the
most general category of structural optimization, since it determines the
optimal number, shape and position of holes [18].

Among the several structural engineering problems which may be
addressed through topology optimization, there is the classical min-
imum weight problem subjected to stress failure criterion [19]. Due
to their extreme importance and applicability from an engineering
point of view, stress-constrained topology optimization problems are
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subject of intensive research in the literature (see references [19–43],
for instance). Among these works on stress-based design, there are some
papers addressing the effect of uncertainties in applied loads, material
properties and geometric parameters [35–43].

In this paper, the minimum weight problem subjected to stress
failure criterion is addressed. This paper aims at comparing three
distinct formulations for stress-constrained topology optimization un-
der load uncertainties: two probabilistic and one non-probabilistic
approach. Each formulation is classified depending on the uncertainty
quantification and propagation approaches employed for handling the
uncertainties:

1. Probabilistic robust approach, proposed in [36]: only mean and
(co)variance of random loads is considered; stress constraints are
written as a weighted sum between expectation and standard
deviation;

2. Probabilistic reliability-based approach, proposed in [37]: full
probabilistic information is used; stress constraints are written
in terms of acceptable probabilities of occurrence;

3. Non-probabilistic robust approach, proposed in [38]: for
bounded uncertainty in loads; worst-case scenario for stress
constraints are considered.

For the sake of simplicity, approaches 1, 2 and 3 are called as
robust, reliability-based and non-probabilistic, throughout the paper,
respectively, in order to avoid misunderstandings.

The remainder of this paper is organized as follows: the stress-
constrained formulations (both deterministic and non-deterministic)
are presented in Section 2; the method employed to solve the opti-
mization problems is presented in Section 3; optimization examples and
discussions are shown in Section 4; and concluding remarks are given
in Section 5. Additional insight about the density-based framework for
topology optimization is given in the Appendix.

2. Stress-constrained topology optimization

In this paper, the traditional density approach [44] is employed as
topology optimization framework: (1) the continuum design domain
is discretized with finite elements [45]; (2) each finite element 𝑒 is
associated with a relative density 𝜌𝑒 ∈ [0, 1], where 0 represents
void and 1 represents solid material. After defining the structural opti-
mization problem (e.g., minimum compliance design [46], stress-based
design [26], compliant mechanism design [47]), established optimiza-
tion methods (see references [48–50], for instance) are employed to
update the relative densities and find an optimized configuration which
minimizes (or maximizes) the objective function, respecting the applied
design constraints.

Next subsections are devoted to present and explain the formu-
lations addressed in this paper, based on the volume minimization
problem subjected to local stress constraints. Section 2.1 presents the
deterministic formulation, whereas Sections 2.2–2.4 present the non-
deterministic formulations, developed to address the same structural
problem under the effect of uncertainties in applied loads. All problems
are formulated by employing the same base interpolation functions
and governing parameters (e.g., stiffness, volume and stress interpo-
lation functions), as well as behavior hypotheses, as defined for the
deterministic problem in Section 2.1. Moreover, each non-deterministic
approach has its own particularities, which are beyond the determin-
istic formulation. These particularities are presented and explained in
each respective subsection.

2.1. Deterministic approach

Considering that the equilibrium configuration of the structural
problem is obtained with the displacement-based finite element method
for linear elasticity under static loads [45], and adopting the classical

von Mises stress failure criterion, one can write the deterministic
problem, in discrete form, as

Min.
𝝆

𝑉𝑝(𝝆) =
∑𝑁𝑒

𝑒=1 𝑉𝑒𝑓𝑣
(

𝜌𝑒
)

s. t. 𝜎(𝑘)𝑒𝑞 (𝝆)
𝜎𝑦

− 1 ⩽ 0 𝑘 = 1, 2,… , 𝑁𝑘

𝐊(𝝆)𝐔(𝝆) = 𝐅
0 ⩽ 𝜌𝑒 ⩽ 1 𝑒 = 1, 2,… , 𝑁𝑒,

(1)

where 𝝆 ∈ R𝑁𝑒 are the design variables of the optimization problem,
𝑉𝑝(𝝆) is the objective function of the optimization problem (a penalized
version of the structural volume 𝑉 (𝝆) =

∑𝑁𝑒
𝑒=1 𝑉𝑒𝜌𝑒), which depends

on the physical relative densities 𝝆 ∈ R𝑁𝑒 , 𝑁𝑒 is the number of finite
elements comprising the design domain, 𝑉𝑒 is the structural volume of
finite element 𝑒, 𝑓𝑣

(

𝜌𝑒
)

is the volume penalization function evaluated
at element 𝑒, 𝜎(𝑘)𝑒𝑞 (𝝆) is the von Mises equivalent stress at point 𝑘, 𝜎𝑦
is the yield stress of solid material, 𝑁𝑘 is the number of points where
the von Mises equivalent stress is computed, 𝐊(𝝆) is the global stiffness
matrix, 𝐔(𝝆) is the global displacement vector and 𝐅 is the global load
vector. The local stiffness matrix of element 𝑒 is interpolated by adopt-
ing the Solid Isotropic Material with Penalization (SIMP) approach, as
𝐤𝑒(𝜌𝑒) =

(

𝜌𝑝𝑒 + 𝜌𝑚𝑖𝑛
)

𝐤𝑏𝑒, following [51,52], where 𝜌𝑚𝑖𝑛 = 1 × 10−9 is
adopted to ensure a well-conditioned system of linear equations, 𝑝 > 1
is a penalization factor (often chosen as 𝑝 = 3 in the literature, and also
in this paper), and 𝐤𝑏𝑒 is the stiffness matrix considering solid material.

The volume penalization function is chosen as 𝑓𝑣
(

𝜌𝑒
)

= 1− e−𝛿𝑣𝜌𝑒 +
𝜌𝑒e−𝛿𝑣 , with 𝛿𝑣 = 5, in order to penalize relative densities and make
intermediate material uneconomical to the optimizer, following [37,
38].

The von Mises equivalent stress at any point 𝑘 is computed based
on [19], and can be written as

𝜎(𝑘)𝑒𝑞
(

𝝆
)

=
√

𝝈𝑇
𝑘
(

𝝆
)

𝐌𝝈𝑘
(

𝝆
)

+ 𝜎2𝑚𝑖𝑛, (2)

where the constant 𝜎𝑚𝑖𝑛 = 1 × 10−4𝜎𝑦 is included in our imple-
mentations to ensure a positive von Mises equivalent stress when
𝝈𝑇
𝑘
(

𝝆
)

𝐌𝝈𝑘
(

𝝆
)

→ 0, in order to avoid numerical instabilities during
the sensitivity analysis, needed for optimization with gradient-based
algorithm.

In Eq. (2), the stress vector at point 𝑘, 𝝈𝑘
(

𝝆
)

, is computed as

𝝈𝑘
(

𝝆
)

= 𝐂(𝜌𝑘)𝐁𝑘𝐮𝑘(𝝆), (3)

and the matrix 𝐌, for plane stress problems, is defined as

𝐌 =
⎡

⎢

⎢

⎣

1 −0.5 0
−0.5 1 0
0 0 3

⎤

⎥

⎥

⎦

. (4)

In Eq. (3), 𝐂(𝜌𝑘) = 𝑓𝜎
(

𝜌𝑘
)

𝐂𝑏 is a modified constitutive matrix,
which is computed by interpolating the constitutive matrix of solid
material, 𝐂𝑏, by a stress interpolation function, 𝑓𝜎

(

𝜌𝑘
)

; 𝐁𝑘 is the strain–
displacement transformation matrix evaluated at point 𝑘; and 𝐮𝑘(𝝆) is
the local displacement vector of the element which contains point 𝑘.

In this work we choose 𝑓𝜎
(

𝜌𝑘
)

= 1 − e−𝛿𝜎𝜌𝑘 + 𝜌𝑘e−𝛿𝜎 to interpo-
late the stresses, in order to relax the stress constraints and ensure
automatic stress constraint feasibility for 𝜌𝑘 → 0, thus avoiding the
singularity phenomenon [19,53]. This choice holds for deterministic
and non-deterministic formulations, with 𝛿𝜎 = 3, following [37,38].

Relative densities 𝝆 are related to design variables 𝝆 through density
filtering with Heaviside step function [54], as shown in the Appendix.

2.2. Robust approach

Considering the design domain is under the effect of random exter-
nal loads, one has to reformulate the originally deterministic optimiza-
tion problem, Eq. (1), in order to properly take these uncertainties into
account. The robust formulation addressed in this work was proposed
in [36], and consists in the replacement of each original deterministic

2
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stress constraint by a weighted sum between its expectation and stan-
dard deviation. The robust formulation, in discrete form, is written as
Min.
𝝆

𝑉𝑝(𝝆)

s. t. �̂�(𝑘)𝑒𝑞 (𝝆,𝐙)
𝜎𝑦

− 1 ⩽ 0 𝑘 = 1, 2,… , 𝑁𝑘

𝐊(𝝆)𝐔(𝝆,𝐙) = 𝐅(𝐙)
0 ⩽ 𝜌𝑒 ⩽ 1 𝑒 = 1, 2,… , 𝑁𝑒,

(5)

where 𝐙 ∈ R𝑁 is a vector containing all random loads of the problem.
The stress measure, based on the von Mises equivalent stress, which is
considered during the optimization process, is computed as

�̂�(𝑘)𝑒𝑞 (𝝆,𝐙) = E
[

𝜎(𝑘)𝑒𝑞 (𝝆,𝐙)
]

+ 𝛼 Std
[

𝜎(𝑘)𝑒𝑞 (𝝆,𝐙)
]

, (6)

where E[⋅] represents the expected value and Std[⋅] the standard devia-
tion of the von Mises equivalent stresses, which depend on the random
loads 𝐙, and 𝛼 is a weighting parameter, which should be adjusted by
the designer in order to ensure a desired degree of robustness to the
optimized topology.

Parameter 𝛼, in Eq. (6), should not be confused with the target
reliability index, 𝛽𝑇 , often adopted in reliability-based formulations
based on first-order approximations. However, as discussed in [35], the
value of 𝛼 can be properly chosen to ensure a conservative limit of the
probability of failure by employing the one-sided Chebyshev inequality.

The expectation E[⋅] and standard deviation Std[⋅] of von Mises
equivalent stresses may be computed by employing any uncertainty
propagation technique usually found in the literature, as the Monte
Carlo Simulation (MCS) [1]. However, since we are handling with
extremely challenging optimization problems, with thousands of de-
sign variables and thousands of stress constraints (as presented later
in the results section), we preferred to employ a cheaper first-order
perturbation approach for uncertainty quantification. Following [36],
expectation and variance of von Mises equivalent stress, at point 𝑘, are
computed as

E
[

𝜎(𝑘)𝑒𝑞 (𝝆,𝐙)
]

≅ 𝜎(𝑘)𝑒𝑞
(

𝝆,𝐙
)

|

|

|𝐙=E[𝐙]
, (7)

and

Var
[

𝜎(𝑘)𝑒𝑞 (𝝆,𝐙)
]

≅
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

𝜕𝜎(𝑘)𝑒𝑞

𝜕𝑍𝑖

|

|

|

|

|

|𝐙=E[𝐙]

𝜕𝜎(𝑘)𝑒𝑞

𝜕𝑍𝑗

|

|

|

|

|

|𝐙=E[𝐙]

Cov(𝑍𝑖, 𝑍𝑗 ), (8)

respectively, where Cov(𝑍𝑖, 𝑍𝑗 ) represents the covariance between ran-
dom variables 𝑍𝑖 and 𝑍𝑗 . After computing the variance, the standard
deviation of von Mises stress is simply computed as

Std
[

𝜎(𝑘)𝑒𝑞
(

𝝆,𝐙
)

]

=
√

Var
[

𝜎(𝑘)𝑒𝑞
(

𝝆,𝐙
)

]

+ 𝜎2𝑚𝑖𝑛, (9)

where the small number 𝜎2𝑚𝑖𝑛 is included in our implementations to
avoid numerical instabilities during the sensitivity analysis.

The authors refer the reader to [36] for further insight about the
robust formulation, as well as the development of necessary derivatives
for analytical evaluation of expectation and variance of von Mises
equivalent stresses, Eqs. (7) and (8), respectively. The robust solution
above only requires mean, E[𝐙], and covariance, Cov(𝑍𝑖, 𝑍𝑗 ), of random
problem parameters.

2.3. Reliability-based approach

The reliability-based formulation addressed in this work is proposed
in [37], in which probability of occurrence of von Mises stress, at each
point of stress evaluation, is constrained by a given admissible failure
probability, 𝑃𝑎𝑑𝑚. The reliability-based formulation, in discrete form, is
written as
Min.
𝝆

𝑉𝑝(𝝆)

s. t. 𝑃
(

𝜎(𝑘)𝑒𝑞 (𝝆,𝐙)
𝜎𝑦

− 1 ⩾ 0
)

⩽ 𝑃𝑎𝑑𝑚 𝑘 = 1, 2,… , 𝑁𝑘

𝐊(𝝆)𝐔(𝝆,𝐙) = 𝐅(𝐙)
0 ⩽ 𝜌𝑒 ⩽ 1 𝑒 = 1, 2,… , 𝑁𝑒

, (10)

where 𝑃 (⋅) represents probability.
In this paper, the reliability-based optimization problem, as de-

fined in Eq. (10), is not directly solved, due to the impracticability
of analytical evaluation of such probabilities. Among the several ex-
isting techniques proposed in the literature for numerically address-
ing reliability-based problems [16,55,56], we choose to employ the
Performance Measure Approach (PMA) [57], following [37].

The PMA consists in a nested strategy: at each time the topology
is updated (iteration of outer optimization problem), the Minimal Per-
formance Points (MiPPs) must be found by performing one first-order
inverse reliability analysis in standard normal space (inner optimization
problem), for each stress constraint.

The outer optimization problem is written as

Min.
𝝆

𝑉𝑝(𝝆)

s. t.
𝜎(𝑘)𝑒𝑞

(

𝝆,
(

𝐘(𝑘))∗
)

𝜎𝑦
− 1 ⩽ 0 𝑘 = 1, 2,… , 𝑁𝑘

𝐊(𝝆)𝐔(𝝆,𝐘) = 𝐅(𝐘)
0 ⩽ 𝜌𝑒 ⩽ 1 𝑒 = 1, 2,… , 𝑁𝑒,

(11)

where 𝐘 ∈ R𝑁 is a vector containing all random variables of the
problem in standard normal space Y, and

(

𝐘(𝑘))∗ is the MiPP associated
with 𝑘th stress constraint.

The inner optimization problem (first-order inverse reliability anal-
ysis) is defined, for each stress constraint, as the minimization of the
negative of the constraint function by adopting the random variables 𝐘
as design variables. The 𝑘th inner problem is written as

Min.
𝐘

−𝜎(𝑘)𝑒𝑞
(

𝝆,𝐘
)

s. t. ‖𝐘‖ = 𝛽𝑇 ,
(12)

where ‖𝐘‖ is the Euclidean norm of 𝐘, which defines the size of the tar-
get reliability index hyper-sphere. In order to evaluate 𝜎(𝑘)𝑒𝑞

(

𝝆,
(

𝐘(𝑘))∗
)

,
in Eq. (11), for 𝑘 = 1, 2,… , 𝑁𝑘, one has to solve 𝑁𝑘 inner optimization
problems, Eq. (12) (one for each design constraint). In this paper, inner
optimization problems are solved with the Hybrid Mean Value (HMV)
algorithm, as originally proposed by [58].

In the PMA, the target reliability index, 𝛽𝑇 , is related to admissible
failure probability through the standard Gaussian cumulative distribu-
tion function 𝛷, such that 𝛽𝑇 ≅ −𝛷−1 (𝑃𝑎𝑑𝑚

)

, which consists in an
approximate relation consistent with first-order approaches [56].

It should be noted that inner problems are solved in standard
normal space; thus, a transformation must be performed from original
space Z, which can be non Gaussian, to the standard normal space Y.
There are some techniques which may be employed to perform this
transformation, mapping from Z to Y, and the reader may consult [59]
for details. In this work, all random variables are Gaussian, such that
Hasofer and Lind transformation is sufficient [56]. Note that this so-
lution requires full probability distribution information about random
problem parameters.

The authors refer the reader to [37] for further insight about the
adopted reliability-based formulation, as well as development of fast so-
lution based on the principle of superposition and necessary derivatives
for solving the inner problems by employing the HMV algorithm.

2.4. Non-probabilistic approach

In robust and reliability-based formulations, presented earlier in
Sections 2.2 and 2.3, respectively, uncertainties in applied loads are
described as random vectors 𝐙. Each component 𝑍𝑖, of 𝐙, represents
an uncertain magnitude or direction of an applied load, and may
assume any probability distribution function. As an alternative to the
probabilistic representation, a non-probabilistic representation is ad-
dressed herein, where the uncertainties in applied loads are described
by unknown-but-bounded variables 𝐖 ∈ [𝐖,𝐖], i.e., in this case,
the unknown variables which describe the uncertainties in magnitudes

3
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and/or directions of applied loads may assume any value between the
prescribed lower and upper limits. The non-probabilistic formulation
addressed in this work is proposed in [38], and is based on the
worst-case scenario for the stress constraints.

The non-probabilistic approach employed herein is remarkably sim-
ilar to the PMA, Eqs. (11) and (12), in the sense that it also consists in
a nested optimization loop. The non-probabilistic approach employed
herein is based on the two-level optimization with anti-optimization
approach, described in [17].

The outer optimization problem is written as

Min.
𝝆

𝑉𝑝(𝝆)

s. t.
𝜎(𝑘)𝑒𝑞

(

𝝆,
(

𝐖(𝑘))∗
)

𝜎𝑦
− 1 ⩽ 0 𝑘 = 1, 2,… , 𝑁𝑘

𝐊(𝝆)𝐔(𝝆,𝐖) = 𝐅(𝐖)

0 ⩽ 𝜌𝑒 ⩽ 1 𝑒 = 1, 2,… , 𝑁𝑒,

(13)

where
(

𝐖(𝑘))∗ is the optimum set of applied loads, which gives the
maximum value for the von Mises equivalent stress at point 𝑘.

In the same way as presented earlier for the PMA (reliability-based
problem), one optimum set of applied loads

(

𝐖(𝑘))∗ should be obtained
for each stress constraint, in order to obtain the worst-case scenario
for the stress constraints at a given iteration of the outer optimization
problem.

The 𝑘th inner optimization problem (also called anti-optimization
problem) is written as

Max.
𝐖

𝜎(𝑘)𝑒𝑞
(

𝝆,𝐖
)

s. t. 𝐖 ⩽ 𝐖 ⩽ 𝐖.
(14)

Solutions of anti-optimization problems should be global minima in
order to ensure a truly worst-case scenario for the stress constraints and
guarantee stress feasibility for the optimized structure under any load
condition given the prescribed bounds for the uncertain variables [9].
However, ensuring global optima in non-convex optimization is al-
ways a challenging task [49]. In this paper, we employ a two step
approach for solving the anti-optimization problems, following [38]:
a grid search method [48] followed by a modified steepest descent
method [36]. Although there is no mathematical guarantee that the
obtained solutions are global minima, this simple two step formulation
demonstrated to provide good results [38].

The authors refer the reader to [38] for further insight about the
adopted non-probabilistic formulation, as well as the development of
fast solution based on the principle of superposition and necessary
derivatives for solving the inner problems by employing the proposed
two step optimization approach.

3. Solution procedure

The optimization problems in Eqs. (1), (5), (11) and (13), which
define the deterministic, robust, reliability-based and non-probabilistic
topology optimization problems in discrete form, respectively, are
solved by employing the augmented Lagrangian method [60], following
implementation described in [36]. The inner problems, related to the
reliability-based and non-probabilistic formulations, are solved with
specific algorithms described in Sections 2.3 and 2.4, respectively.

The augmented Lagrangian method consists in a sequential formu-
lation: the original constrained optimization problem is replaced by a
sequence of optimization subproblems. The objective function of the
optimization subproblems is the augmented Lagrangian function, which
consists in the original objective function (the penalized structural vol-
ume) weighted by the design constraints (von Mises stress constraints)
and respective Lagrange multipliers. After solving a given optimization
subproblem, the penalization parameter and Lagrangian multipliers are
updated; then, the next optimization subproblem is solved; and so on,
until convergence.

By analyzing Eqs. (1), (5), (11) and (13), one can verify that the
only difference among them is the evaluation of the stress measure
which is actually employed during the optimization process: 𝜎(𝑘)𝑒𝑞 (𝝆)
(deterministic); �̂�(𝑘)𝑒𝑞 (𝝆,𝐙) (robust); 𝜎(𝑘)𝑒𝑞

(

𝝆,
(

𝐘(𝑘))∗
)

(reliability-based);

and 𝜎(𝑘)𝑒𝑞

(

𝝆,
(

𝐖(𝑘))∗
)

(non-probabilistic). Thus, in this section, we show
the augmented Lagrangian function for 𝜎(𝑘)𝑒𝑞 (𝝆), only, but it can be
defined for any other stress measure in the same way, by replacing the
employed stress measure.

The augmented Lagrangian function is defined considering all stress
constraints of the optimization problem, such that:

𝐿
(

𝝆,𝝁, 𝑟
)

=
𝑁𝑒

∑𝑁𝑒
𝑒=1 𝑉𝑒

𝑉𝑝
(

𝝆
)

+ 𝑟
2

𝑁𝑘
∑

𝑘=1

⟨

𝜇𝑘
𝑟

+
𝜎(𝑘)𝑒𝑞

(

𝝆
)

𝜎𝑦
− 1

⟩2

, (15)

where 𝝁 ∈ R𝑁𝑘 is a vector which contains all Lagrange multipliers
of the problem, 𝑟 is the penalization parameter, 𝜇𝑘 is the Lagrange
multiplier associated with 𝑘th stress constraint, and ⟨⋅⟩ = max(0, ⋅). The
objective function is weighted by constant 𝑁𝑒

∑𝑁𝑒
𝑒=1 𝑉𝑒

for the purpose of

normalization.
Since bound constraints are not included in the augmented La-

grangian function, they must be explicitly considered in the optimiza-
tion subproblems, defined as

Min.
𝝆

𝐿
(

𝝆,𝝁(𝑐), 𝑟(𝑐)
)

s. t. 𝐊(𝝆)𝐔(𝝆) = 𝐅
0 ⩽ 𝜌𝑒 ⩽ 1 𝑒 = 1, 2,… , 𝑁𝑒,

(16)

where the superscript (𝑐) indicates 𝑐th optimization subproblem.
After solving 𝑐th optimization subproblem, one can employ the

solution
(

𝝆(𝑐))∗ of the current subproblem and current estimate of
Lagrange multipliers 𝝁(𝑐) and penalization parameter 𝑟(𝑐) to update the
next estimate of Lagrange multipliers

𝜇(𝑐+1)
𝑘 ←

⟨

𝑟(𝑐)
⎛

⎜

⎜

⎜

⎝

𝜎(𝑘)𝑒𝑞

((

𝝆(𝑐)
)∗)

𝜎𝑦
− 1

⎞

⎟

⎟

⎟

⎠

+ 𝜇(𝑐)
𝑘

⟩

, (17)

and penalization parameter

𝑟(𝑐+1) ←
{

min
(

𝛾 𝑟(𝑐), 𝑟𝑚𝑎𝑥
)

if 𝛿𝜎(𝑐)𝑚𝑎𝑥 > 𝜔 𝛿𝜎(𝑐−1)𝑚𝑎𝑥
𝑟(𝑐) otherwise,

(18)

where 𝛾 > 1 and 𝜔 < 1 are update parameters, 𝑟𝑚𝑎𝑥 is an upper value for
the penalization parameter and 𝛿𝜎𝑚𝑎𝑥 =

(

𝜎𝑚𝑎𝑥𝑒𝑞
𝜎𝑦

− 1
)

, where 𝜎𝑚𝑎𝑥𝑒𝑞 repre-
sents the maximum value among all computed von Mises equivalent
stresses. The value of penalization parameter 𝑟 is increased by a factor
of 𝛾 only if the maximum value of stress constraints does not reduce
at least by a factor of 𝜔, i.e., if there is reasonable progress regarding
feasibility of the optimized topology, the penalization parameter is
not updated, in order to avoid unnecessary increase of optimization
subproblems nonlinearity.

This procedure is performed until both convergence criteria are si-
multaneously reached: (1) when maximum change on design variables
becomes smaller than 𝑡𝑜𝑙𝑜𝑢𝑡; (2) when feasibility is guaranteed, such that
𝜎𝑚𝑎𝑥𝑒𝑞
𝜎𝑦

− 1 < 𝑡𝑜𝑙𝜎 .
The value of 𝛿, from the smoothed Heaviside function, Eq. (A.1),

employed after filtering design variables (see the Appendix for details),
is increased through a continuation approach: the problem is initially
solved considering 𝛿 = 0; then, the value of 𝛿 is increased as 𝛿 ← 𝛿 + 5
and next problem is solved, considering solution of current problem,
current Lagrange multipliers and current penalization parameter as
initial estimates, and so on, until an upper value 𝛿𝑚𝑎𝑥 = 100 is reached.
Large value of 𝛿 is employed to reduce blurred boundaries effect and
achieve crisp black and white topologies.

The optimization subproblems, Eq. (16), are solved with a modified
steepest descent algorithm, described in [36]. The necessary derivatives
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Fig. 1. Design domains with geometric dimensions and boundary conditions.

are developed by employing the adjoint technique and are presented
in the base papers addressed in this work: (1) sensitivity analyses
for deterministic and robust approaches [36]; (2) sensitivity anal-
ysis for reliability-based approach [37]; (3) sensitivity analysis for
non-probabilistic approach [38].

4. Numerical results and discussions

The numerical examples addressed in this section demonstrate the
main similarities and differences among the three non-deterministic
approaches presented in the paper. The numerical examples consist
in 2D topology optimization problems, where hypotheses of plane
stress are considered. Two problems are addressed: (a) problem with
rectangular design domain under two uncertain loads; (b) L-shaped
design problem under one deterministic and one uncertain load; Fig. 1.
Obtained results are compared with the deterministic results, which are
obtained for applied loads evaluated at their mean values.

Material and geometric parameters shared by both problems:
Young’s modulus of 1 MPa, thickness of 1 mm, and Poisson’s ratio of
0.3.

Input data for the optimization solver are: 𝑟(1) = 0.01, 𝑟𝑚𝑎𝑥 = 10 000,
𝛾 = 10 and 𝜔 = 0.8, as input data for the augmented Lagrangian method;
𝑡𝑜𝑙𝑜𝑢𝑡 = 0.1 and 𝑡𝑜𝑙𝜎 = 0.01 as maximum change on design variables and
required feasibility for the stress constraints, respectively; and 𝝆 = 𝟏 as
initial estimate for the design variables. The optimization subproblems
are solved with a modified steepest descent method, proposed in [36],
and it employs: maximum range of moving limits of 𝜌𝑒 ±0.1; minimum
range of moving limits of 𝜌𝑒±0.02; tolerance based on maximum change
on design variables of 𝑡𝑜𝑙𝑠𝑢𝑏 = 0.01; and maximum number of iterations
for a given subproblem of 𝑛𝑖𝑡𝑚𝑎𝑥 = 50. Moving limits are heuristically
updated based on two previous iterations, where parameters 𝑘1 = 0.7
and 𝑘2 = 1.1 are used for reducing moving limits if oscillation of
design variables occur and increasing otherwise, respectively [36]. At
the beginning of each subproblem, moving limits are set to either
maximum range (±0.1), if 𝛿 = 0, or minimum range (±0.02), if 𝛿 > 0,
where 𝛿 governs the nonlinearity of the smoothed Heaviside projection,
Eq. (A.1).

Additional data: the problems are discretized with square bilinear
isoparametric finite elements, and the stresses are computed at the
centroid of each element. Topologies are illustrated in gray scale, Fig. 2,
where black represents solid material (𝜌 = 1) and white represents void
(𝜌 = 0). Von Mises stresses are illustrated in color images, Fig. 3, where
red represents maximum normalized stresses (≅1) and blue represents
minimum normalized stresses (≅0). Post-processed reliability indices
are illustrated in color images, Fig. 3, where red represents mini-
mum reliability indices, 𝛽𝑚𝑖𝑛, and blue represents maximum reliability
indices, 𝛽𝑚𝑎𝑥.

Fig. 2. Gray scale employed to represent topologies. White represents the void phase
(𝜌 = 0) and black the solid phase (𝜌 = 1).

Fig. 3. Color scale employed to represent normalized von Mises stresses and post-
processed reliability indices. In stress graphs: red represents maximum normalized stress
(≅1) and blue the minimum normalized stress (≅0). In reliability indices graphs: red
represents the minimum (𝛽𝑚𝑖𝑛) and blue the maximum (𝛽𝑚𝑎𝑥) post-processed reliability
index. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

4.1. Rectangular problem under two uncertain loads

The problem with rectangular design domain, Fig. 1(a), is dis-
cretized with a finite element mesh of 80 000 elements. Input data:
filtering radius of 𝑅 = 0.04m and yield stress of 𝜎𝑦 = 100 kPa. Two
applied loads of uncertain magnitude and deterministic direction are
considered, one horizontal and one vertical. Both loads have Gaussian
magnitude, 𝑓 ∼ 𝑁 (E[𝑓 ], Std[𝑓 ]). The expected value of the horizontal
load is 2N, and its standard deviation is 2N, such that 𝑓𝐻 ∼ 𝑁(2, 2)N.
The expected value of the vertical load is 10N, and its standard devia-
tion is 2N, such that 𝑓𝑉 ∼ 𝑁(10, 2)N. The random variables 𝑓𝐻 and 𝑓𝑉
are uncorrelated. Applied loads are distributed over a length of 0.2 m
to avoid stress concentration.

Obviously, since uncertain loads with Gaussian magnitudes are
considered, the most proper approaches that may be employed to for-
mulate the optimization problems are the probabilistic ones. However,
aiming at comparing the deterministic and the three non-deterministic
(probabilistic and non-probabilistic) approaches, three different situa-
tions are considered, based on how the applied loads are handled:

• Deterministic problem, with 𝑓𝑉 = 10N and 𝑓𝐻 = 2N (applied
loads are evaluated at the mean values);

• Probabilistic problem, where applied loads are uncorrelated Gaus-
sian variables as defined earlier, i.e., 𝑓𝑉 ∼ 𝑁(10, 2)N and 𝑓𝐻 ∼
𝑁(2, 2)N. Additional data: 𝛼 = 2, robust approach, Eq. (6); 𝛽𝑇 = 2,
reliability-based approach, Eq. (12);

• Non-probabilistic problem, where the uncertain magnitudes are
bounded as: 𝑓𝑉 ∈ [6, 14]N and 𝑓𝐻 ∈ [−2, 6]N. The bounds are
defined considering E[𝑓 ] ± 2 × Std[𝑓 ] (since 𝛼 = 𝛽𝑇 = 2 in the
probabilistic problem).

The anti-optimization problems, related to the non-probabilistic
formulation, are solved with the two step procedure described earlier.
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Fig. 4. Problem with rectangular design domain, results: topologies (left); von Mises equivalent stresses (middle); post-processed reliability indices (right). The stresses shown in
the figure are the respective stress measures defined for each problem. Structural volumes, maximum stresses and minimum reliability indices are shown below each figure.

For each stress constraint: (1) the von Mises stress is evaluated at 9
points (combinations of 𝐟𝑔𝑟𝑖𝑑𝐻 = [−2, 2, 6]𝑇 N and 𝐟𝑔𝑟𝑖𝑑𝑉 = [6, 10, 14]𝑇 N);
(2) from the point that presents the maximum von Mises stress, the
modified steepest descent method is employed to achieve the solution
of the anti-optimization problem.

Obtained results are post-processed through MCS, for 𝑓𝐻 ∼ 𝑁(2, 2)N
and 𝑓𝑉 ∼ 𝑁(10, 2)N. Reliability indices, 𝛽(𝑘) = −𝛷−1

(

𝑃 (𝑘)
𝑓

)

, are evalu-
ated at each point of stress computation 𝑘, where 𝑃 (𝑘)

𝑓 is obtained by
dividing the number of failures at 𝑘 by the total number of realizations,
1 × 106. A maximum value of 𝛽𝑚𝑎𝑥 = −𝛷−1 (1 × 10−6

)

≅ 4.75 is
considered to illustrate the post-processed reliability indices.

Fig. 4 shows optimized topologies, von Mises equivalent stresses and
post-processed reliability indices. The von Mises stresses illustrated in
Fig. 4 are the stress measures employed in each formulation: 𝜎(𝑘)𝑒𝑞 (𝝆)
(deterministic); �̂�(𝑘)𝑒𝑞 (𝝆,𝐙) (robust); 𝜎(𝑘)𝑒𝑞

(

𝝆,
(

𝐘(𝑘))∗
)

(reliability-based);

and 𝜎(𝑘)𝑒𝑞

(

𝝆,
(

𝐖(𝑘))∗
)

(non-probabilistic).
By analyzing Fig. 4, one can observe that the topologies obtained

with the non-deterministic approaches have two structural members,
instead of only one member as the deterministic solution. However, al-
though these topologies are the same (same number of holes), different
shapes and structural volumes are obtained. Post-processed reliability
indices demonstrate that the non-deterministic solutions are more reli-
able than the deterministic one, since their minimum reliability indices
resulted next to the target reliability index defined for the reliability-
based problem, i.e., 𝛽𝑚𝑖𝑛 ≅ 𝛽𝑇 = 2, while the minimum reliability index
for the deterministic solution resulted much smaller, as 𝛽𝑚𝑖𝑛 ≅ −1.5.
Maximum probabilities of failure (related to the minimum reliability
indices) are shown in Table 1.

One can observe, in Fig. 4, in the stress graphs, that all structures
are highly stressed, given the employed stress measures, and that the
maximum stresses exceed the yield stress in less than 1%, indicating
that all structures are truly optimized given the respective optimiza-
tion problems; i.e., there is no room for improvements regarding the

Table 1
Structural volumes, minimum reliability indices, maximum probabilities of failure, and
number of iterations until convergence. Rectangular problem.

Problem 𝑉 ∕𝑉𝑚𝑎𝑥 𝛽𝑚𝑖𝑛 𝑃 𝑚𝑎𝑥
𝑓 Iterations

Deterministic 6.38% −1.448 92.62% 942
Robust 12.94% 2.026 2.14% 1334
Reliability-based 13.03% 2.027 2.13% 1250
Non-probabilistic 14.63% 2.182 1.46% 1359

structural volume, since additional volume minimization would imply
in higher stresses, and hence, unfeasible solutions.

Although the employed stress measures for robust and reliability-
based approaches have different meanings, respective optimization
solutions are almost the same. Post-processed reliability indices are
next to 2 in both cases, indicating that the robust formulation, in this
case, can be employed as an alternative approach to the reliability-
based one. However, although very similar in this case, nothing can
be said for other problems, specially when non-Gaussian variables are
employed in representing the uncertain variables.

The non-probabilistic approach, on the other hand, provided a more
conservative result when compared with the probabilistic ones, since
its minimum reliability index, 𝛽𝑚𝑖𝑛 = 2.182, resulted slightly larger
than 𝛽𝑇 = 2. This is justified, since the non-probabilistic approach
ensures stress constraint feasibility for the whole interval defined by the
combinations of the bounds of the uncertain loads. In the reliability-
based approach, on the other hand, the most extreme points next to
the combinations of the bounds of the uncertain variables are not
considered, since their probabilities of occurrence are smaller than the
admissible failure probability. Thus, in this example, one can verify
there is no direct relation between probabilistic and non-probabilistic
approaches, since very distinct results are obtained.

Table 1 shows the number of iterations for each case. It is ver-
ified that the non-deterministic approaches require more iterations
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Fig. 5. L-shaped design problem, results: topologies (left); von Mises equivalent stresses (middle); post-processed reliability indices (right). The stresses shown in the figure are
the respective stress measures defined for each problem.

until convergence. Moreover, the non-deterministic approaches require
solution of additional equilibrium equations, one for each uncertain
load [36–38], in order to obtain auxiliary displacement fields and then
compute the respective stress measures. In addition, in both nested
approaches, inner optimization problems are solved for each point of
stress computation, at the beginning of each outer iteration. However,
since the principle of superposition is employed, the computational cost
for solving a given inner problem (inverse reliability analysis or anti-
optimization problem) is negligible, since there is no need to solve
the equilibrium equations for computing the von Mises stresses (and
their derivatives with respect to the uncertain variables) at each inner
iteration.

Although not considered in our implementations, parallel comput-
ing can drastically reduce the computational cost associated with the
computation of MiPPs (reliability-based approach) or the worst-case

scenario for the stress constraints (non-probabilistic approaches) at
the beginning of each outer iteration. Since the inner problems do
not depend on each other, these can be solved simultaneously, such
that the use of parallel computing can be effective in reducing the
total computational cost, as demonstrated by [61], in the design of
MEMS (MicroElectroMechanical Systems) under unknown-but-bounded
parameters.

4.2. L-shaped problem under one uncertain load

L-shaped design problems are often employed, in the literature, as
benchmark problems, in order to test new algorithms and formulations
for stress-based topology design [26,34]. These problems are specially
interesting, from a stress-based design point of view, since the L-shaped
design domain has a sharp corner that leads to stress concentration,
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which should be properly avoided by the algorithm in order to ensure
a rounded corner on the optimized topology.

The L-shaped design problem addressed in this subsection, Fig. 1(b),
is discretized with 57 600 elements. Input data: filtering radius of 𝑅 =
0.02m and yield stress of 𝜎𝑦 = 16 kPa. Two loads are applied, one
horizontal and one vertical. The vertical load is deterministic, 𝑓𝑉 =
0.3N, and the horizontal load has deterministic direction and uncertain
magnitude, 𝑓𝐻 ∼ 𝑁(0, 0.015)N. The applied loads are distributed over
a length of 0.06 m to avoid stress concentration.

In order to properly compare the deterministic and
non-deterministic approaches, three distinct problems are formulated,
based on how the horizontal load is handled:

• Deterministic problem, with null horizontal load (mean value);
• Probabilistic problem, considering 𝑓𝐻 ∼ 𝑁(0, 0.015)N. Additional

data: 𝛼 = 2, robust approach, Eq. (6); 𝛽𝑇 = 2, reliability-based
approach, Eq. (12);

• Non-probabilistic problem, where the uncertain magnitude is
bounded as: 𝑓𝐻 ∈ [−0.03, 0.03]N. The bounds are defined con-
sidering E[𝑓 ] ± 2 × Std[𝑓 ] (since 𝛼 = 𝛽𝑇 = 2 in the probabilistic
problem).

The anti-optimization problems (related to the non-probabilistic
approach) are solved with the two step procedure. For each stress
constraint: (1) the von Mises stress is evaluated at 3 points (𝐟𝑔𝑟𝑖𝑑𝐻 =
[−0.03, 0, 0.03]𝑇 N); (2) from the point that presents the maximum von
Mises stress, the modified steepest descent method is employed to
achieve the solution of the anti-optimization problem.

Fig. 5 shows the obtained results, including the post-processed
reliability indices. One can verify that the obtained topologies have
rounded corners, thus avoiding the sharp corner of the design domain;
moreover, the stresses at these regions satisfy the stress failure cri-
teria. The optimized topologies obtained as solution of deterministic,
reliability-based and non-probabilistic problems are the same. The
topology obtained as solution of the robust problem presents a small
local difference, which consists in a small hole. The post-processed reli-
ability indices demonstrate that the deterministic structure is extremely
sensitive to variations in the horizontal load. On the other hand, it is
shown that all the non-deterministic approaches provide reliable re-
sults, in the sense that their minimum post-processed reliability indices
resulted next to the target reliability index, i.e., 𝛽𝑚𝑖𝑛 ≅ 𝛽𝑇 .

Contrary to what happens in the previous problem (under two
uncertain loads), the L-shaped problem subjected to one uncertain load
only, when addressed with the non-probabilistic approach, does not
provide a more conservative result when compared with the proba-
bilistic approaches. The three structures obtained by employing the
non-deterministic approaches have similar structural volumes and post-
processed minimum reliability indices. This is justified, since now only
one uncertain variable is being considered. In this case, the extreme
points of the interval are also taken into account in the probabilistic
approach, since the probability of occurrence of these points coincides
with the probability associated with the target reliability index, 𝛽𝑇 .

It is interesting to observe, in this case, that the post-processed relia-
bility indices are critical (i.e., next to 𝛽𝑚𝑖𝑛) in a few points only, different
from what happens in the problem of rectangular design domain, Fig. 4,
where the post-processed reliability indices are critical in almost the
whole structure (at least considering the probabilistic results). It should
be noted that the problem with rectangular design domain is quite
simple, from a stress-based design point of view, which facilitates the
obtaining of highly stressed structures. The L-shaped design problem,
on the other hand, is more challenging, requiring a more complex
structure, with fewer points under the maximum (yield) stress, which
implies in post-processing graphs with fewer critical points.

Table 2 shows the maximum probability of failure, associated with
the minimum post-processed reliability index through MCS, and the
number of iterations until convergence, for each topology optimization
problem solved in this subsection.

Table 2
Structural volumes, minimum reliability indices, maximum probabilities of failure, and
number of iterations until convergence. L-shaped design problem.

Problem 𝑉 ∕𝑉𝑚𝑎𝑥 𝛽𝑚𝑖𝑛 𝑃 𝑚𝑎𝑥
𝑓 Iterations

Deterministic 34.18% 0.114 45.47% 1675
Robust 42.74% 2.078 1.89% 1848
Reliability-based 43.02% 2.065 1.94% 1913
Non-probabilistic 42.56% 2.096 1.80% 2145

By comparing Tables 1 and 2, one can verify the L-shaped design
problem requires a larger number of iterations until convergence. This
is justified, since L-shaped design problems are more challenging, from
a stress-based design point of view. Table 2 shows the non-deterministic
approaches are more costly than the deterministic one, in agreement
with the results shown earlier in Table 1.

5. Concluding remarks

This work presented a comparison of deterministic, robust,
reliability-based and non-probabilistic approaches for stress-constrained
topology optimization of continuum structures under uncertainty in
applied loads. It is demonstrated that all approaches, deterministic
and non-deterministic, can be formulated in a similar way, in which
resulting optimization problems can be solved by the same method.
However, each non-deterministic formulation requires an uncertainty
propagation approach for handling the uncertainty in applied loads,
such as: (1) the first-order perturbation method, to evaluate the ex-
pectation and standard deviation of von Mises stresses in the robust
approach; (2) the PMA, to formulate the reliability-based approach; and
(3) the anti-optimization approach, to obtain the worst-case scenario
for the stress constraints in the non-probabilistic approach.

Two optimization problems were solved. Numerical results demon-
strated that, while the deterministic solutions resulted extremely unre-
liable, all non-deterministic approaches resulted in robust and/or reli-
able structures, even though the formulations are completely different
from each other considering a mathematical point of view.

Even though first-order approaches were employed to formulate
the probabilistic problems, good agreement was obtained in the post-
processing with MCS. Regarding the topology optimization problem
under two applied loads with uncorrelated Gaussian magnitudes, it was
shown that the robust and reliability-based approaches provide similar
results, indicating the robust approach, in this case, can be employed
as an alternative to the reliability-based approach. It was also shown
that the non-probabilistic approach provides a more conservative result
when compared with the other approaches, since it takes into account
the combination of extremes of the intervals, ensuring stress constraint
feasibility also for these cases, contrary to what happens in the proba-
bilistic approaches, where the combinations of extremes are neglected
due to their low probabilities of occurrence. When only one load
of uncertain magnitude was considered, the three non-deterministic
approaches provided similar results. This is justified, in this case, since
there is no combination of extremes when only one uncertain variable
is considered.
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Appendix. Density filtering with heaviside step function

In this paper, relative densities are not directly employed as design
variables, i.e., they are not directly used during the optimization pro-
cess. The use of relative densities as design variables leads to common
problems in density-based topology optimization approaches, such as
checkerboard-like areas and mesh dependent solutions [18].

In order to alleviate these difficulties, density filtering with Heavi-
side step function is employed [54]. In this approach, relative density
of element 𝑒 is computed as

𝜌𝑒 = 1 − e−𝛿�̃�𝑒 + �̃�𝑒e−𝛿 , (A.1)

where �̃�𝑒 is the filtered relative density of element 𝑒, obtained from a
linear projection

�̃�𝑒 =

∑

𝑖∈𝜗𝑒 𝑤(𝐱𝑖)𝑉𝑖𝜌𝑖
∑

𝑖∈𝜗𝑒 𝑤(𝐱𝑖)𝑉𝑖
, (A.2)

over the design variables 𝝆, in a circular neighborhood 𝜗𝑒, centered in
element 𝑒, which contains all the elements whose center is within a
radius 𝑅 specified by the designer.

A linear weighting function is employed and is defined as

𝑤(𝐱𝑖) = 𝑅 − ‖𝐱𝑖 − 𝐱𝑒‖, (A.3)

where 𝐱𝑖 contains the coordinates of the center of element 𝑖 and 𝐱𝑒
contains the coordinates of the center of the neighborhood 𝜗𝑒.

For 𝛿 = 0, in Eq. (A.1), a linear behavior between physical and
filtered relative densities is obtained, 𝜌𝑒 = �̃�𝑒, whereas for 𝛿 → ∞, the
Heaviside step function is obtained [62]. As an additional benefit to
avoid checkerboard patterns and ensuring mesh independent solutions,
the employed density filter exploits use of a smoothed Heaviside step,
Eq. (A.1), which is usually employed in order to achieve crisp black and
white solutions by considering large values of 𝛿, reducing the blurred
boundaries effect related to linear density filtering [54].
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